《電池2030+(BATTERY2030+)》是一項大規模的歐洲長期研究計劃,為歐盟委員會提出的戰略能源技術計劃(SET-plan)的想法之一,旨在聯合歐洲整體解決未來電池研發過程中所面臨的各項挑戰,克服重重阻力達成宏大的既定的電池性能目標。研究內容以“化學中性途徑(chemistry neutral approach)”為導向
(二)智能傳感器研發計劃
短期計劃:在電池單元級別上,依靠各種傳感技術和簡單的集成開發非侵入式多傳感方法,為評估電池內界面動力學,電解質降解,樹枝狀生長,金屬溶解,材料結構變化的相關性提供可行性。監測電池運行期間關鍵參數的正常或者異常行為,并定義從傳感器到BMS的傳遞函數,通過運行實時傳感將溫度窗口提高>10%。
中期計劃:實現(電)化學穩定傳感技術的微型化和集成,在電池層面和實際電池模塊中均具有多功能,以經濟有效的方式與工業制造過程兼容;利用傳感數據實現高級BMS,構建新的自適應和預測控制算法;BIG-MAP中集成感應和自我愈合;多價電極系統的過電壓降低>20%;將鋰離子電池可利用電壓窗口增加>10%。
長期計劃:依靠先進的BMS控制傳感器的通信,新的AI協議通過無線方式實現完全可操作的智能電池組。在未來的電池設計中,將感測/監視與刺激引起的局部自愈合機制結合,從而可以通過集成感測-BMS-自愈合系統得到智能電池。
3.4 自愈合理念(Integration of smartfunctionalities–self-healing)
電池技術的可持續發展以及我們對電池普及應用的日益依賴,要求確保其具有很高的可靠性和安全性。其中探測或者傳感不可逆變化是獲得更好的可靠性第一步。但是,要真正確保可靠性,電池應該能夠自動感知損壞,并恢復原始配置及其整體功能。那我們可以嘗試模仿自然愈合機制(比如傷口愈合)來制造智能長壽命電池嗎?《電池2030+》中借鑒醫學領域中“再生工程”的理念,提出可以開發在電池內注入相應自愈合功能的材料,以恢復電極內部的缺陷。另一方面,提出將狀態傳感和自我愈合功能緊密相連(如圖6所示)。從傳感器檢測到的信號將被發送到電池管理系統并進行分析,如果出現問題,BMS將發出信號發送給執行器以觸發自我愈合過程的刺激。這種既自我感知又觸發自修復的結合過程將賦予電池更高的安全性和消費者更高的使用可靠性。
圖6. 由BMS介導的電池工作-感應-自我修復協同耦合過程
(一)自愈合理念重點研發技術
a. 開發自愈合的電池材料以及電極界面:包裹CNT的自愈合微膠囊,用于修復電極導電網絡。具有自愈合性的人工SEI結構活性材料,用于修復電極材料充放電過程中界面結構的破壞。
b. 開發適用于電池組件和界面的自愈合聚合物策略:超分子聚合物在自愈合多相固體聚合物電解質中的應用。使用無毒的生物基材料(例如多糖類材料,蛋白質材料)設計薄而多孔的可控隔膜,開發功能化生物基電解質隔離膜,專門設計使其具有自愈合特性,通過控制電解液的分解從而改善電池老化。
c. 構建復合電極:設計具有聚合物或礦物質外殼的微膠囊,使其包含能夠通過外界刺激響應來釋放愈合劑,或在受刺激破裂時將釋放鋰鹽、鈉鹽等。利用特定高分子結構的設計(比如PAA-聚輪烷滑輪型聚合物)控制電極膨脹結構并優化電池循環的效率。
(二)自愈合理念研發計劃
短期計劃:在各種交叉領域發展具有自我愈合功能的電池。對隔膜進行功能化處理,并開發依靠氫鍵相同作用實現可逆交聯的超分子結構,以愈合電極-隔離膜的膜破裂,同時與電池的目標化學性質兼容。
中期計劃:設計智能型隔離膜,具有可容納多種功能有機-無機愈合劑的微膠囊,可通過磁性,熱或化學作用觸發自動愈合,同時確定與刺激驅動的自愈合操作相關的響應時間,以愈合與電極斷裂或SEI中間相老化有關的故障。
長期計劃:設計和制造功能性和孔隙率可控的低成本生物基電解質隔膜。在電池感測和BMS之間建立有效的反饋回路,通過外部刺激適當觸發已經植入電池的自我愈合功能。
3.5 未來電池規模化制造(Manufacturability of future batterytechnologies)
新一代突破性電池材料的面世將開啟嶄新的電池技術機會。但是,從廣義上講,這些新電池技術至少需要面對兩個主要的驗證階段。首先,在原型級別上證明其性能潛力,其次,擴大規模化生產的可行性和進入工業化過程的評估。《電池2030+路線圖》提出未來電池制造的解決策略:工業4.0和數字化的前景。利用建模和人工智能實現制造過程動態軟件模擬,突破制造單元的空間構造,避免或基本減少經典的嘗試和錯誤方法。通過全數字化制造,理解和優化過程參數及其對最終產品的影響。
圖7. 電池制造的數字化過程
(一)未來電池規模化制造重點技術
a. 設計過程數字化:引入新功能,如自愈合材料/界面、各類智能傳感器或其他執行器、生態電池設計和替代電池設計,在電池制造過程中開發和驗證多重物理量和多尺度模型,以更準確了解制造過程的每個步驟。
b. 制造過程數字化:開發靈活的制造流程和高精度建模工具,以優化工藝、條件和機器參數,開發用于處理電極漿料,電極片生產,電池組裝,電池包組裝和電池性能的實時模型(即用于電池制造的數字化模型)。
(二)未來電池規模化制造研發計劃
短期計劃:從最先進的信息開始,重點放在是電池設計方法。改進模擬工具(如多物理場模型),通過深度學習和機器學習方法減輕計算負擔,應用AI技術用于電池設計。
中期計劃:不斷發展BIG平臺,MAP平臺,智能傳感器技術,自愈合技術,回收策略和其他創新領域并將其整合到流程中;在電池級設計取得進展之后,將啟動并實施基于AI制造方法,即建模> AI>制造(包括新技術的制造以及制造過程中的數字化模型)。規模也可擴大到電池制造過程中的技術,可擴展到電池化學成分開發,例如多價和有機的材料開發,或者其他電池體系,如液流電池。
長期計劃:將整個AI驅動的方法集成并整合在電池單元設計中,實現基于BIG-MAP的完全自主系統。利用這種方法促進學術界創新和工業界開發可商業化的最新電池技術。
3.6 回收策略(Recyclability)
《電池2030+》路線圖將促進建立循環經濟社會,減少浪費,減少二氧化碳排放量并更明智地使用戰略資源作為長期愿景。因此,發展高效電池拆解和回收技術是保證歐盟到2030年時,電池經濟長期且可持續性發展至關重要的保證。這就需要有針對性的開發新型,創新的,簡單的,低成本的和高效率的回收流程,以保證電池全生命周期的低碳足跡和經濟可行性。比如對活性材料采用直接方法回收,而不是經過多步驟的途徑。采用直接修復或重新調節電極的方式即可使電池重新達到可工作的狀態。基于此,《電池2030+》對材料層級,界面層級和單體電池層級都提出一些新的回收概念和整體流程:(1)整個生命周期可持續設計(包括生態設計和經濟設計);(2)電池及電池組拆解設計;(3)回收設計方法。這個過程需要研究者,電池生產企業,材料供應商協同參與,并與回收商一起將回收策略及相關限制條件整合到新的電池設計中。
圖8. 未來的電池回收過程:直接回收與再利用過程有機的整合
(一)回收策略重點計劃
a. 電池組件及單體的重復可利用性:通過產品標簽、電池管理系統、內置和外置傳感器等相關數據的收集和分析,集成傳感器和電極自愈合功能,用于識別損壞/老化的組件并為重復利用做準備。同時在電池設計中盡可能延長壽命,并考慮重新校準、翻新以及二次使用和多次使用的可行性。
b. 引入現代低碳足跡物流概念:包括分散式處理,開發產品可追溯性,特別是整個電池生命周期中關鍵原材料的可追溯性。以及開發對有價值關鍵材料的高效、低成本和可持續的一步回收處理策略,并將其“翻新”為電池可用活性材料,如果不能完全逆轉,則通過調整組成來合成活性材料前驅體或相關原材料。
c. 自動化及選擇性回收:采用AI輔助技術及設備,實現電池自動分揀和評估,自動將電池組拆解到單體電池級別,自動拆解電池至最大的單個組件級別。同時借助于大數據技術分析并尋求適用于所有電池及電池組的通用拆解過程,確保即使是像鋰金屬固態電池,鋰金屬-空氣電池等新型電池,也能最大程度地回收電池組件及其關鍵性組成材料。
(二)回收策略研發計劃
短期計劃:實現電池系統可持續的發展和拆解,開發數據收集和分析系統,用于電池組/模塊分揀和重復利用/再利用的技術,并開始開發自動化拆解電池。并用于快速電池表征的新測試。
中期計劃:開發自動將電池分解成單個組件的方法,以及粉末及其成分的分類和回收,將其“翻新”為先進的新型電池活性材料的技術。在電池中測試回收的材料。將開發二次應用中材料再利用的預測和建模工具。顯著提高關鍵原材料的回收率(比如石墨,正極材料)并明顯改善對能源和資源的消耗。
長期計劃:開發和驗證完整的直接回收系統;系統在經濟上可行,安全且對環境友好,并且比目前的流程更低的碳排放量足跡。
Part IV:其他各國家路線圖發展規劃
除了歐洲的SET-PLAN計劃外,目前只有少數幾個國家有明確路線圖并為之長期努力。在這里,簡短介紹來自中國,印度,日本和美國的電池路線圖,以更廣闊的視野來看待2030+電池的目標。
4.1 中國發展規劃:中國現在是全球發表電池研究論文最多的國家。但同時在工業界也定義了兩個并行的研究和創新戰略:進化戰略和創新戰略。進化戰略專注于優化現有搭載新能源電池的車輛和能源動力總成系統,包括電池性能的提升(高安全,快速充電,低耗電量等)。而革命性戰略的目標是開發下一代電池化學體系用于車輛動力總成系統。如圖9所示,可以比較2015年至2035年中國的電池發展目標與日本新能源產業的技術綜合開發機構(NEDO)的RISING計劃目標,以及美國能源部(DOE)的Battery 500計劃。
圖9. 中國2013年至2030年的國家新能源項目和戰略目標
4.2 印度發展規劃:印度最近也為汽車制造行業發布了路線圖,其中電池研發和制造被認為具有很高的戰略意義。但路線圖中并未展示達到目標需要何種關鍵性技術,只是明確表達了電池的重要性。
4.3 日本發展規劃:日本在某些關鍵領域一直有制定長期穩定研究計劃的傳統,電池就是其中之一。日本新能源產業的技術綜合開發機構(NEDO)的RISING-2項目就是一項長期的大規模計劃,始于2010年,計劃于2022年結束。它定義了兩個關鍵的電池性能目標(如圖10所示),其中對于純電動汽車,在2020年動力電池系統能量密度需達到250Wh/kg,2030年達到500Wh/kg。而對于插電混合動力汽車,在2020年動力電池系統能量密度需達到200Wh/kg。這是唯一可以嘗試與《電池2030+》提出目標相比較的國際研發計劃。
圖10. 日本NEDO的2020年和2030年電池性能目標
4.4 美國發展規劃:美國能源部(DOE)于2016年主導了Battery 500項目,其聯合了六所大學,四個國家實驗室和IBM的科研實力。其總體目標是開發鋰金屬電池,相比目前電動汽車用電池組能量密度170-200Wh/Kg,使電池組能量密度達到500Wh/Kg。而且Battery 500將致力于開發體積更小,重量更輕,更便宜的電動汽車電池。
作者: 來源:鑫欏鋰電
責任編輯:jianping