• <li id="dbi8b"><legend id="dbi8b"><th id="dbi8b"></th></legend></li>

  • <span id="dbi8b"><optgroup id="dbi8b"></optgroup></span>

    <span id="dbi8b"></span>

    觀察| 歐洲2030年電池計劃

    2020-10-22 11:33:55 太陽能發電網
    《電池2030+(BATTERY2030+)》是一項大規模的歐洲長期研究計劃,為歐盟委員會提出的戰略能源技術計劃(SET-plan)的想法之一,旨在聯合歐洲整體解決未來電池研發過程中所面臨的各項挑戰,克服重重阻力達成宏大的既定的電池性能目標。研究內容以“化學中性途徑(chemistry neutral approach)”為導向

    《電池2030+(BATTERY2030+)》是一項大規模的歐洲長期研究計劃,為歐盟委員會提出的戰略能源技術計劃(SET-plan)的想法之一,旨在聯合歐洲整體解決未來電池研發過程中所面臨的各項挑戰,克服重重阻力達成宏大的既定的電池性能目標。研究內容以“化學中性途徑(chemistry neutral approach)”為導向,基于現有或未來多種不同類型的電池化學物質,通過縮小各自之間的差距來發揮其全部潛力以實現電池的實際能力和理論極限。理念上基于給歐洲電池企業乃至全球電池企業的價值鏈提供新的發展和支持,比如從原材料到先進材料的發展,到電池和電池包的設計制造,電池壽命終止后的回收利用和電池實際應用場景等。除此之外,《電池2030+》的長期發展路線圖也充分地彌補了歐洲電池內部的中期研究和創新工作–歐洲技術和創新平臺(ETIP)。

    因此,歐盟希望借助于《電池2030+》來推動歐洲為期10年的大規模努力以促進電池領域的變革性發展。不斷提出新的研究方法和開拓新的創新領域,實現安全的超高性能電池開發,最終實現歐洲社會2050年前不再使用化石能源(如圖1所示)。2019年3月,歐盟啟動《電池2030+》協調和支持行動,以確定計劃的研發路線圖。本次發布的《電池2030+》研發路線圖第二版草案經討論修改后,將于2020年2月底提交給歐盟委員會。


    圖1. 《電池2030+》的長期愿景及使命

    Part II:“電池2030+”計劃目標

    《電池2030+》的總體目標是實現具有超高性能和智能化的可持續電池功能以適用于每個應用場景。所謂超高性能,是指能量和功率密度接近理論極限,出色的使用壽命和可靠性,增強安全性,環境可持續性和可擴展性,以實現具有競爭力成本的大規模化生產電池。第一個重要挑戰是達到最好的電池性能,因此發現新材料和新化學體系的開發過程必須加快。《電池2030+》提出電池界面基因組(BIG)–材料加速平臺(MAP)計劃,將采用人工智能(AI)大幅減少電池材料的開發周期。第二個重要挑戰是延長單體電池和電池系統的使用壽命和安全性。壽命和安全都對未來電池的大小,成本和接受度具有關鍵性影響。為了實現第二個挑戰,《電池2030+》提出了兩種不同且互補的建議方案:開發直接在化學和電化學反應中可探測的傳感器,將新型傳感器嵌入電池中連續監控其“健康”和“安全狀態”。另一方面,通過使用自愈合功能來提高電池容量并提高電池性能。

    與目前最先進的電池技術相比,《電池2030+》旨在提出并影響電池技術的未來發展(如圖2):

    第一,將電池實際性能(能量密度和功率密度)和理論性能之間的差距減少至少1/2。

    第二,至少將電池的耐用性和可靠性提高3倍。

    第三,對于給定的電力組合,將電池的生命周期碳足跡減少至少1/5。

    第四,使電池的回收率達到至少75%,并實現關鍵的原材料回收率接近100%。


    圖2.《電池2030+》對未來電化學存儲系統的最新技術展望

    Part III:“電池2030+”主要研發方向

    3.1 材料加速平臺(Materials Acceleration Platform,MAP)

    從能源技術的生產,存儲到最終交付使用,材料的發現和開發始終貫穿于整個過程。特別對于新興的電池技術,先進材料幾乎是所有清潔能源創新的基礎。若依靠現有的傳統重復性試驗開發過程,需要耗費大量的時間,人力物力去開發新型高性能電池材料并用于電池設計,這一過程從最初發現到完全實現商業化可能長達10年之久。因此,在《電池2030+》項目中,為了加速超高性能的,可持續發展的智能型電池開發,計劃在歐洲范圍內設立電池“材料加速平臺(MAP)”,并與電池界面基因組(BatteryInterface Genome,BIG)集成在一起。同時BIG-MAP基礎設施模塊化設置,全系統具有高度的通用性,以便能夠容納所有新興的電池化學體系,材料成分,結構和界面。另一方面,MAP將利用人工智能(AI)從許多互補的方法和技術中集成和編排數據,整合計算材料設計,模塊化和自主性綜合機器人技術和先進表征,實現全新的電池開發策略。促進材料,工藝和設備的逆向設計和定制。最終,在MAP框架下由每個核心元素構建概念電池,開發出具有突破性的電池材料,極大提高電池開發速度和電池性能。


    圖3. 電池材料加速平臺(MAP)的核心組成部分

    一)MAP重點研發技術

    a. 高通量技術:開發自主材料合成機器人,構建電池材料自身及使用過程中原位的自動化高通量表征。實現電極活性材料及其組合方式的快速篩選和電解液配方的系統表征。基于高通量數據的建模和數據生成相結合,以物理參數為導向對電池及其活性材料進行分析和表征。

    b. 建立基于分布式訪問模型的跨區域通用數據基礎架構,實現多維度互連和集成工作流程:確保在材料的閉環研發過程中,能夠實時進行跨區域的實驗數據集成和建模。通過數據的共享實現信息的匯總及規模化分析。以機器學習和物理理論為導向的數據驅動模型去識別材料開發過程中重要的參數和特征,開發有效的和穩固的方式耦合和連接不同維度的模型,加速材料開發過程。

    c. 開發基于電池系統的人工智能(AI),構建統一數據框架:基于AI技術開發集成物理參數和數據驅動的混合型模型。比如目前已有一些AI軟件包如ChemOS和phoenix正在用于自驅動實驗室的原型開發階段。利用歐洲材料建模委員會(EMMC)和歐洲材料與建模本體(EMMO)支持的訪問協議,將學術界和工業界、材料建模和實際應用工程聯系起來,實現電池整體價值鏈的數據標準化傳遞及共享。

    d. 電池材料和界面的逆向設計工程:通過所需的目標性能定義電池材料和/或界面的組成和結構,從而打破傳統的開發過程,促進材料的高效高速開發。

    (二)MAP研發計劃

    短期計劃:開發用于電池材料和電池本身的共享且可互操作的數據基礎架構接口,涵蓋電池發現和開發周期所有領域的數據;自動化的工作流程,用于識別在不同時間尺度下傳遞相關特征/參數;構建基于不確定性的電池材料的數據驅動和物理模型。

    中期計劃:在材料加速平臺(MAP)中實現電池基因組(BIG-MAP)構建,能夠集成計算建模,自主合成機器人技術和材料表征;展示電池材料的逆設計過程;在發現和預測過程中直接集成來自嵌入式傳感器的數據,例如主動的自我愈合。

    長期計劃:在電池基因組平臺中建立完全的自主開發過程;集成電池單元組裝和設備級測試;包含材料發現過程中的可制造性和可回收性;展示材料開發周期的5倍加速;實施并驗證用于電池超高通量測試的數字技術。


    3.2 電池界面基因組(Battery interface genome,BIG)

    電池不僅包含電極和電解質之間的界面,而且還包含其他大量重要的界面,例如:在集流體和電極之間或在活性材料和諸如導電碳和/或粘結劑等的添加劑之間。因此在開發新的電池化學體系或現有電池技術中引入新的化學物質時,界面是有效利用電池電極材料關鍵之所在。MAP是提供基礎設施以加快材料的發現,而《電池2030+》提出BIG將對材料開發過程提供必要的理解和模型,以預測和控制影響電池性能關鍵界面的動態變化(如圖4所示)。BIG將高度適應不同的化學物質,從材料到設計,用大量數據構建模型,形成全新的材料開發途徑,以超越當前的鋰離子電池技術。


    圖4. 電池界面基因組(BIG)運作流程

    (一)BIG重點研發技術

    a. 開發更高的空間、時間分辨率和運算速度的新型計算方法和實驗技術:以獲得超高性能電池系統構造和材料組合搭配的新理解。通過基于物理的數據驅動混合模型和仿真技術描述最先進的實驗和技術方法。

    b. 開發具有高還原度的電池界面表征技術:通過對電池界面及其動態特性的精確表征,建立電池界面屬性的大型共享數據庫,利用大數據再對表征技術進行優化調整,不斷修正測試偏差,真實還原界面工作過程,提高保真度。

    c. 建立電池及其材料的標準化測試協議:發布詳細的材料表征檢查列表,通過將電池性能與材料化學性質逐一比對來獲取有關電池界面的關鍵信息。

    d. 構建更精確的材料結構與電池性能模型:利用電子,原子及介觀材料尺度模型耦合形成連續相模型,真實反映電池正常工作時的界面狀態、老化和衰減機制。

    (二)BIG研發計劃

    短期計劃:建立一定范圍內表征/測試協議和數據的電池界面標準;開發可利用AI和仿真模擬技術進行動態特征分析和數據測試的自主模塊;開發可互操作的高通量和高保真的界面表征方法。

    中期計劃:開發預測混合模型,用于在時間和空間尺度上推演電池界面;演示模型電池間逆向合成設計;能夠在MAP平臺(BIG-MAP)中實現電池界面基因組計算建模,自主綜合機器人技術和材料的集成表征。

    長期計劃:在BIG-MAP平臺中建立完全的自主開發過程;證明界面性能提高5倍;表明電池界面基因組到新型電池化學的可移植性。

    3.3 智能傳感器(Integration of smart functionalities–sensing)

    隨著目前對電池應用的依賴性不斷提高,要求對電池的狀態進行準確監控,提高其質量,可靠性和使用壽命。在過去幾十年中,雖然許多電化學阻抗設備(EIS)以及先進的電池管理系統(BMS)發展,但成效有限。無論電池技術發展如何,性能仍取決于電池單元內界面的性質和依賴于溫度驅動的反應以及不可預測的動力學。雖然監控溫度對于延長循環壽命和延長電池壽命至關重要,但在目前電動汽車的應用中也無法直接測量單體電池的溫度。為了更好了解/監測電池工作過程中的物理參數對電化學反應過程的影響,有效解決黑箱問題。《電池2030+》提出將智能傳感器嵌入到電池中,能夠實現電池在空間和時間上的分辨監視(如圖5所示)。這樣可以整合和開發各種傳感技術在電池中以實時傳遞信息(如溫度,壓力,應變,電解質成分,電極膨脹度,熱流變化等)。最重要的是依據大量的原位實時監測數據,可以與BIG-MAP協作構建電池工作狀態函數及模型,開發智能的響應式電池管理系統。將在單體電池級別和整個系統級別上進行分層管理。


    圖5. 未來具有原位傳感及輸出分析裝置的電池

    (一)智能傳感器重點研發技術

    a. 集成和開發適用于電池的多種傳感器,將智能功能嵌入電池:光學、電學、熱學、聲學和電化學傳感器用于設計/開發固態電解質(SEI)中間相動態監測功能。比如利用電阻溫度檢測器(RTD),熱敏電阻,熱電偶等溫度傳感器監控電池內外的局部及整體溫度變化。電化學傳感器主要用于監控電池界面SEI增長,氧化還原穿梭物質和重金屬溶解。壓力傳感器可以檢測電極應變和壓力變化,從而反應電池的SoC以及SoH狀態。光學傳感器則可以對電池局部溫度,壓力和應變通過光學信號同時感應,其中光子晶體纖維傳感器可以對多感應信號同時采集但又解耦合分析,是未來發展多參數監測新型傳感器的趨勢。

    b. 開發具有創新化學涂層的傳感器:采用特殊涂層的傳感器,減緩電解液及電化學反應副產物對傳感器的腐蝕,提升器件穩定性,傳導靈敏性和使用壽命。將傳感器尺寸減小到幾微米以匹配電池隔離膜的厚度,采用無線傳感技術來避免復雜的連接布線問題




    作者: 來源:鑫欏鋰電 責任編輯:jianping

    太陽能發電網|m.www-944427.com 版權所有
    男人精品网站一区二区三区| 欧美成人一区二区三区在线观看| 免费羞羞视频网站| 精品国产日韩亚洲一区91| 四虎成人免费影院网址| 网址你懂的在线观看| 四虎影视在线影院在线观看| 精品人人妻人人澡人人爽人人| 午夜视频在线观看视频| 男人j桶女人j免费视频| 免费国产剧情视频在线观看| 激情综合色综合久久综合| 亚洲色图视频在线观看| 欧美日韩一区二区三区四区在线观看 | 车上做好紧我太爽了再快点 | 国产成人在线观看网站| 荫蒂添的好舒服视频| 国产超碰人人爽人人做| 91麻豆果冻天美精东蜜桃传媒| 国产精品亚洲аv无码播放| 麻豆久久久9性大片| 国产免费久久精品99久久| 精品在线一区二区| 免费观看日本污污ww网站一区| 波多野结衣乱码中文字幕| 亚洲欧美日本另类| 日韩美女专区中文字幕| 久久精品中文字幕第一页| 日韩精品在线观看视频| 久久精品国产亚洲一区二区| 成人综合激情另类小说| 一道本在线观看视频| 在厨房里挺进美妇雪臀| tube6xxxxxhd丶中国| 国产视频一区二区| 麻豆文化传媒精品免费网站 | 高清在线一区二区| 国产中文欧美日韩在线| 男女疯狂一边摸一边做羞羞视频 | 国产午夜三级一区二区三| 精品国产不卡一区二区三区|